Rámové Konstrukce Dřevostavby: Fosny a Skladba

Tento článek je určen především pro projektanty pozemních staveb a poskytuje souhrnnou příručku pro navrhování konstrukcí. Cílem je usnadnit provedení architektonického a konstrukčního návrhu tím, že umožní předběžný návrh dimenzí nosných konstrukcí za použití relativně jednoduchých pravidel a empirických vzorců.

Při použití příručky je nutné vždy vycházet z konkrétních podmínek, ve kterých konstrukce působí, a splnit okrajové podmínky, za kterých návrh platí. Rozměry konstrukcí uváděné v textu nebo na obrázcích je nutno chápat jako směrné, proto je vždy nutno přihlédnout ke konkrétním podmínkám a rozměrové hodnoty v konečném návrhu staticky ověřit.

Prostorová Tuhost Stavebních Konstrukcí

Prostorovou tuhostí nazýváme schopnost stavební konstrukce odolávat zatížení, které působí obecným směrem. Pro zajištění prostorové tuhosti objektu musí být, za předpokladu tuhých stropů či střešní roviny, konstrukce ztužena alespoň ve třech svislých rovinách, které se neprotínají ve společné přímce (průsečnici).

Pro zajištění prostorové tuhosti objektu musí být, za předpokladu tuhých stropů či střešní roviny, konstrukce ztužena alespoň ve třech svislých rovinách, které se neprotínají ve společné přímce (průsečnici).

Mezi prvky zajišťující tuhost konstrukce patří:

Čtěte také: Typy a stavba dřevěných chatek

  • Vetknuté sloupy
  • Příhradová zavětrování
  • Rámy
  • Stěny
  • Monolitická jádra

Vetknuté Sloupy

Vetknuté sloupy, především u halových jednopodlažních popř. dvoupodlažních staveb, musí být dostatečně zakotvené do základů. Na účinky vodorovného zatížení sloupy působí staticky jako konzoly vetknuté buď v obou směrech, nebo mohou být v jednom směru uložené kloubově (především u dřeva a oceli). V zásadě je možné vetknuté sloupy navrhnout ze všech materiálů pro různé konstrukční výšky.

Příhradová Zavětrování

Příhradová zavětrování jsou typická pro dřevěné a ocelové skelety a halové stavby. Zajišťují tuhost konstrukce pouze ve své rovině, kolmo ke své rovině jsou měkké. Staticky jsou velmi výhodné s ohledem na přenos účinků osovými silami v jednotlivých prutech a díky velké tuhosti.

Rámy

Rámy jsou možné u všech typů staveb a jsou architektonicky a provozně velmi výhodné. V halách jsou časté dvoukloubové rámy různých provedení, u vícepodlažních budov patrové rámy, které vzniknou tuhým spojením sloupů s průvlaky. Typickým materiálem pro rámy je železobeton.

Stěny

Stěny jsou možné u všech druhů staveb; u obytných a provozních budov mohou tvořit výztužné stěny štíty, dělicí příčky (mezibytové apod.), schodišťové stěny a stěny u výtahů probíhající po celé výšce objektu. Staticky působí jako konzoly vetnuté do základů, jejich tuhost je závislá především na šířce stěny.

Monolitická Jádra

Monolitická jádra vznikají propojením stěn ohraničujících komunikační prostory. Od pěti podlaží je hospodárné použití posuvného bednění.

Čtěte také: Střešní konstrukce: Podpůrné trámy

Dilatace

Podle příčiny se dilatace navrhuje pro předpokládaný vzájemný posun ve svislém směru, například pro různé sedání, nebo ve vodorovném směru z důvodů objemových změn materiálu konstrukce, způsobených například smršťováním betonu, tepelnou roztažností apod.

Velikosti dilatačních celků pro jednotlivé konstrukční materiály jsou předepsány v některých normách, nebo se musí konstrukce na účinek například smršťování betonu posoudit. Při kombinaci různých materiálů je nutné vzít v úvahu nejnepříznivější z hodnot. Velikost dilatačního úseku závisí také na uspořádání ztužujících prvků stavby.

Například největší délky dilatačních celků s ohledem na tepelnou roztažnost jsou u ocelových konstrukcí, pokud je konstrukce uspořádána tak, že konstrukce může volně dilatovat od středu k oběma koncům. Podle ČSN EN 1992-1-1 lze u železobetonových konstrukcí zanedbat účinky teploty a smršťování, pokud je dodržena maximální vzdálenost dilatačních spár djoint = 30 m. Pro prefabrikované konstrukce mohou být vzdálenosti spár větší, protože část smršťování a dotvarování proběhla před montáží.

Zatížení Střech

Nosná konstrukce střech závisí především na tvaru zastřešení, zatížení vlastní tíhou střešního pláště, nahodilým zatížením sněhem a větrem. U střech s větším sklonem se zpravidla navrhují krovy, nejčastěji dřevěné. Při větších rozponech nebo neobvyklých tvarech může být krov podepřen ocelovými prvky (nosníky na větší rozpětí, rámy apod.). Zpravidla uspořádání vychází ze základních soustav - krokevní, hambalkové, vaznicové nebo vlašské.

Zatížení Sněhem

Způsob stanovení zatížení sněhem je dán normou ČSN EN 1991-1-3. Postup je takový, že se podle zeměpisné polohy určí sněhová oblast podle mapy na obr. 2.3 a každé sněhové oblasti přináleží charakteristická hodnota zatížení sněhem na zemi sk v tab. 2.6, jejíž překročení je dáno s určitou statistickou zárukou. Tato hodnota se dále upraví pomocí součinitelů, které zohledňují tvar střechy, sklon, drsnost, tepelné vlastnosti, možnost tvoření návějí, vliv okolního terénu a vzdálenost sousedních staveb na charakteristickou hodnotu zatížení sněhem na střeše, která je dána zatížením na metr čtvereční půdorysné plochy střechy.

Čtěte také: Konstrukce podlahy z palubek

Pro jednoduché tvary pultových a sedlových střech, kde není bráněno sesouvání sněhu, se zatížení uvažuje do sklonu 60°. Tvarový součinitel lze určit v závislost na úhlu podle následujícího grafu v tab. 2.8.

Zatížení Větrem

Stanovení účinku větru na stavební konstrukce podle normy ČSN EN 1991-1-4 je poměrně složité a vyžaduje stanovení řady dílčích parametrů. V následujícím textu je uveden zjednodušený postup pro stanovení účinku větru pro jednoduché pozemní stavby. Základním údajem pro stanovení účinku větru je jeho základní výchozí rychlost. Ta je stanovena pro určitou geografickou polohu v České republice podle mapy na obr. 2.5 pro jednotlivé větrné oblasti v tab. 2.10. Je to desetiminutová střední rychlost s roční pravděpodobností překročení p = 0,02 ve výšce 10 m nad plochým terénem.

Dalšími faktory, které ovlivňují zatížení větrem, je tvar a drsnost terénu v okolí stavby. Okolní terénní útvary jako kopce, hřebeny, terénní zlomy (tzv. orografie) výrazně ovlivňují proudění vzduchu. Pro určení vlivu drsnosti terénu se rozlišují kategorie terénu podle následující tab.

Zatížení větrem se uvažuje jako tlak nebo sání kolmo na uvažovanou plochu střechy nebo fasády, případně jako tření proudu vzduchu o danou plochu ve směru této plochy. V následujících tab. 2.12 - 2.15 jsou uvedeny součinitele vnějšího tlaku na ploché, pultové a sedlové střechy a pro úplnost též na svislé fasády tvarově jednoduchých budov. Účinek větru v daném místě pláště budovy se určí jako součin maximálního dynamického tlaku větru qp(ze) pro referenční výšku ze a součinitele vnějšího tlaku cpe.

Pro jednotlivé oblasti vnější plochy stavby jsou tvarové součinitele uvedeny ve dvou hodnotách - cpe,10 a cpe,1. První z hodnot cpe,10 platí pro referenční plochy o velikosti 10 m2 a větší. Tato hodnota je menší než hodnota druhá cpe,1, platící pro referenční plochu do 1 m2 včetně.

Krovy

Krov je nosná konstrukce šikmé střechy (sklon 10-45°) a strmé střechy (sklon > 45°). Jednotlivé krokve se opírají v patě o pozednice nebo jsou zakotveny do vazného trámu a vzájemně se opírají ve hřebeni. Při rozpětí L < 12 m (hospodárné L ≤ 8 m) se navrhují krokve z řeziva, při větších rozpětích lepené nosníky apod.

  • Krokevní soustava: Jednotlivé krokve se opírají v patě o pozednice nebo jsou zakotveny do vazného trámu a vzájemně se opírají ve hřebeni.
  • Hambalková soustava: Pro zmenšení rozpětí krokví je vložený hambalek v každém páru krokví (popřípadě více hambalků v patrech), který rozpírá krokve pro svislé zatížení - hambalek je tlačený prvek.
  • Vaznicová soustava: Vrcholová vaznice je namáhána jen svislými silami, zároveň proti vodorovným silám se vzájemně podepírají krokve. Mezilehlé vaznice jsou namáhány svislými i vodorovnými silami.
  • Vlašská soustava: Vlašské krokve (vazničky) se u této soustavy umísťují rovnoběžně s okapovou hranou, jejich rozpětí se pohybuje 4-5 m, vzájemné vzdálenosti krokví jsou obvykle mezi 0,8-1,0 m. Krokve se kladou na vzpěry (horní pasy) vazníků, které se zapouštějí do krokví (vazniček) na hloubku 20 mm.

Ploché Střechy

Z hlediska nosné konstrukce je plochá střecha obdobná stropu v běžném podlaží a liší se pouze velikostí zatížení. Stropní konstrukce se skládají z nosné stropní desky, ze stropních nosníků, průvlaků, podlahy a podhledu. Tab. 3.1 uvádí orientační tloušťky jednotlivých částí stropů.

Při rozhodování o volbě stropní nosné konstrukce bereme mimo jiné zřetel na její rozpětí. Každému druhu stropní konstrukce odpovídá doporučený rozsah rozpětí, ve kterém je vhodné konstrukci navrhovat.

Tabulky

Níže jsou uvedeny některé tabulky zmiňované v textu, které slouží k orientaci v dané problematice.

Konstrukční prvek Minimální hodnota Maximální hodnota
Rozpětí krokví 7,0 m 14,0 m
Rozpětí vaznic 3,0 m 6,0 m

tags: #ramova #konstrukce #drevostavby #fosny #160 #x

Oblíbené příspěvky: